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Abstract
Here we report on high field transport in GaN based on the rigid ion model of the
electron–phonon interaction within the cellular Monte Carlo (CMC) approach. Using the rigid
pseudo-ion method for the cubic zinc-blende and hexagonal wurtzite structures, the anisotropic
deformation potentials are derived from the electronic structure, the atomic pseudopotential and
the full phonon dispersion and eigenvectors for both acoustic and optical modes. Several
different electronic structure and lattice dynamics models are compared, as well as different
models for the interpolation of the atomic pseudopotentials required in the rigid pseudo-ion
method. Piezoelectric as well as anisotropic polar optical phonon scattering is accounted for as
well. In terms of high field transport, the peak velocity is primarily determined by deformation
potential scattering described through the rigid pseudo-ion model. The calculated velocity is
compared with experimental data from pulsed I –V measurements. Good agreement is found
using the rigid ion model to the measured velocity–field characteristics with the inclusion of
dislocation and ionized impurity scattering. The crystal orientation of the electric field is
investigated, where very little difference is observed in the velocity–field characteristics. We
simulate the effects of nonequilibrium hot phonons on the energy relaxation as well, using a
detailed balance between emission and absorption during the simulation, and an anharmonic
decay of LO phonons to acoustic phonons, as reported previously. Nonequilibrium phonons are
shown to result in a significant degradation of the velocity–field characteristics for high carrier
densities, such as those encountered at the AlGaN/GaN interface due to polarization effects.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The group III nitrides have received considerable attention
in recent years for short wavelength optoelectronic [1]
and high power, high frequency electronic applications [2].
These materials are generally wide bandgap materials and
can crystallize in both wurtzite and zinc-blende polytypes,
although the former is the dominant equilibrium structure [3].
Wide bandgap materials such as GaN or SiC are suitable
for high temperature operation because they become intrinsic
at much higher temperature than narrower bandgap materials
such as Si or GaAs. The wide bandgap also results in a
much higher breakdown field as the threshold field for impact
ionization is much higher. The breakdown field of GaN is

estimated to be above 4 MV cm−1, which is much higher
than Si (0.2 MV cm−1) or GaAs (0.4 MV cm−1). Hence they
are attractive for high power applications. At the same time,
the predicted high peak and saturation velocities in GaN are
advantageous for high frequency operation.

GaN/AlGaN heterostructure (or high mobility) field-effect
transistors (HFETs or HEMTs) have been demonstrated [4],
which have shown promising performance as microwave
power devices. Recent results on nanometer scale gate-length
devices have demonstrated cutoff frequencies in excess of
150 GHz [5, 6]. As a result of the discontinuity of the
spontaneous and piezoelectric polarization at the GaN/AlGaN
interface, such structures have a high carrier density without
any intentional doping of the barrier layer. Typical sheet
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densities are of the order of 1–2×1013 cm−2, which is an order
of magnitude higher than conventional AlGaAs/GaAs HFETs.
While such high densities of carriers are beneficial in terms of
reduced resistance and high current, the effect on transport is
still little understood.

The high field transport properties of the nitrides are
still relatively less well understood compared to cubic
semiconductors such as Si, GaAs and InP from an experimental
standpoint. Time-of-flight measurements were reported by the
Army Research Laboratories in GaN p–i–n diodes, where a
peak steady state velocity of 1.9 × 107 cm s−1 was reported
[7]. Experimental studies of high field transport at Arizona
State University based on pulsed I –V measurements reported
peak velocities in excess of 2–3 × 107 cm s−1 in bulk GaN [8]
and AlGaN/GaN heterostructures [9].

The ensemble Monte Carlo technique has been used
now for over 30 years as a numerical method to simulate
nonequilibrium transport in semiconductor materials and
devices, and has been the subject of numerous books and
reviews [10, 11]. The ensemble Monte Carlo algorithm
consists of generating random free flight times for each particle
in an representative ensemble of particles, choosing the type of
scattering occurring at the end of the free flight, changing the
final energy and momentum of the particle after scattering, and
then repeating the procedure for the next free flight. Physical
quantities of interest such as the drift velocity, average energy
and distribution function are calculated as averages over the
ensemble. There have been a number of ensemble Monte Carlo
(EMC) simulations of transport in GaN. The first transport
simulation using Monte Carlo (MC) methods was reported
by Littlejohn et al in 1975 using a single-valley, parabolic
band model [12]. In 1993, Gelmont et al reported a two-
valley model including polar optical, deformation potential
and piezoelectric phonon scattering, where intervalley electron
transfer was predicted to give rise to a large negative
differential conductance [13]. Mansour et al also used a two-
valley model to simulate the high temperature dependence of
the electron velocity [14]. They included acoustic phonon,
polar optical phonon, intervalley phonon and ionized impurity
scattering. An improved multi-valley model was reported by
Bhapkar and Shur in 1997 [15]. In addition to � and U valleys,
they included the second � valley (�2 valley) occurring in
the wurtzite structure in this calculation. The energy gap
between the first and second valleys was modified to 2.0 eV,
which was taken from band structure calculation. The acoustic
phonon, polar optical phonon, ionized impurity, piezoelectric
and intervalley scattering mechanisms were considered.

All the simulations mentioned above used analytical,
non-parabolic band structures. Full band EMC simulation
uses the full electronic dispersion and Bloch states taken
from electronic structure calculations to model the electron
trajectories and scattering process, which in general provides
more accurate results, particularly at high electric fields [11].
Full band MC simulations were first reported for GaN by the
Georgia Tech group. Kolnı́k et al reported the first full band
MC simulation for both wurtzite and zinc-blende GaN [16].
Acoustic, polar optical and intervalley scattering were included
in the simulation. Transport studies across a variety of

wideband materials was reported by Brennan et al [17]. In the
calculation, they used the same isotropic parameters for both
zinc-blende and wurtzite GaN.

While these studies were the first full band simulations
of GaN, they used electron–phonon scattering rates based
on deformation potentials taken for other III–V zinc-blende
materials in the absence of such information for the nitride.
There have been no reported measurements of the optical
and intervalley deformation potentials in the nitrides to our
knowledge. Furthermore, the deformation potential scattering
in general is strongly anisotropic and involves multiple phonon
modes and polarizations. Hence, from a theoretical standpoint,
a more complete description of high field transport from first
principles should use a fully anisotropic model for electron–
phonon interaction derived from the electronic structure and
lattice dynamics directly.

In order to address the electron–phonon coupling from a
microscopic standpoint within a full band model of electron
transport, in the present paper we report on the use of
the rigid pseudo-ion model (RIM) to calculate the fully
anisotropic deformation potential in zinc-blende and wurtzite
GaN using empirical pseudopotential band structures for both.
These anisotropic rates are then used in a full band cellular
Monte Carlo simulator to investigate high field transport
in wurtzite GaN and compared with constant deformation
potential models and available experimental data. In section 2,
we first discuss the RIM approach, followed by application
of this model to calculate the deformation potential limited
scattering rate in cubic GaN (section 3) and hexagonal GaN
(section 4). Other scattering mechanisms considered in the
subsequent transport simulations are covered in section 5,
followed by discussion of the cellular Monte Carlo (CMC)
method and its application to high field transport in GaN
using the RIM scattering rates derived earlier. The effects of
nonequilibrium longitudinal optical (LO) phonons are reported
as well in section 6, where a comparison of the velocity–field
characteristics with and without nonequilibrium phonons is
presented. Finally, we conclude in section 7.

2. Rigid pseudo-ion model

As was mentioned in section 1, the electron–phonon
interaction is typically calculated by using the deformation
potential in a conventional Monte Carlo (MC) simulation, with
the deformation potential often adjusted to fit experimental
data. Since experimental information on the deformation
potentials in GaN is relatively unknown, and because of the
high fields and anisotropic nature of transport in this wide
bandgap system, here the deformation potential is calculated
by the rigid pseudo-ion model (RIM) [18, 19].

Essentially, the rigid pseudo-ion model calculates the
electron–phonon interaction potential as the effective potential
associated with the rigid displacement of the atomic
pseudopotentials associated with the atomic motion. The
electron–phonon (non-polar) scattering rate is calculated from
Fermi’s golden rule as

Pη
e−p(ν,k, ν ′,k ± q) = 2π

h̄
|〈ν ′,k ± q, Nηq

∓ 1|He−p|ν,k, Nηq〉|2δ(εν′,k±q ∓ h̄ωηq − εν,k), (1)
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where He−p is the electron–phonon interaction, εν,k and
εν′,k±q are the electron energies before and after scattering,
respectively, and ν ′ denotes the band after scattering. The
upper and lower signs correspond to absorption and emission
of a phonon, respectively, and the phonon occupation number,
Nηq , is given by the Bose–Einstein distribution function.

The Hamiltonian for the electron–phonon interaction is
derived from the electron–ion potential. In general, we need
to sum the potential change for all the atoms in the crystal. The
potential change due to the atomic displacement is (assuming
small displacements)

He−p =
∑

l,κ

[Vκ(r − Rl,κ + ul,κ ) − Vκ(r − Rl,κ )]

=
∑

l,κ

ul,κ gradVκ(r − Rl,κ ), (2)

where Rl,κ is the equilibrium position of the κ th atom in the lth
unit cell and ul,κ is its displacement from equilibrium, which
is represented by the Fourier expansion over q:

u
(η)

lκ =
∑

q

√
h̄

2Mκ Nωηq

(aq + a†
−q)e

(η)
κ (q) eiq·Rlκ , (3)

where Mκ is the atomic mass, N is the number of primitive
cells and e(η)

κ (q) denotes the normalized polarization vector of
phonons of branch η for the atom type κ . Let Rl,κ = Rl + τ κ .
We then obtain the relation using Bloch’s theorem:

〈ν ′,k ± q|gradVκ(r − Rl,κ )|ν,k〉
= e−iq·Rl 〈ν ′,k ± q|gradVκ(r − τ κ)|ν,k〉. (4)

From equations (2) and (4), the non-zero matrix elements are

〈ν ′,k ± q, Nηq ∓ 1|He−p|ν,k, Nηq〉

=
∑

κ

√
h̄

2Mκ Nωη q

Aκ(ν
′,k,±q, ν)e(η)

κ (±q)

×
√

Nηq + 1
2 ∓ 1

2 , (5)

where

Aκ(ν
′,k, q, ν) = −〈ν ′,k + q|gradVκ(r − τ κ )|ν,k〉eiq·τ κ .

(6)
The wavefunction |ν,k〉 and atomic potential can be

expressed by the Fourier series over the reciprocal lattice vector
G (Bloch expansion):

|ν,k〉 = 1√



∑

G

Cν,k(G)ei(k+G)·r, (7)

Vκ(r) = 1
2

∑

G

Vκ(G)eiG·r, (8)

where 
 is the unit cell volume. The coefficient Vκ(G) is
expressed as

Vκ(G) = 2




∫




d3rVκ(r) e−iG·r. (9)

The expansion given in equations (8) and (9) is strictly
valid only if the time-varying lattice displacement is neglected
since the crystal potential is not in general a periodic function

due to the vibrational motion. Assuming that this time varying
the component is negligible and the Bloch expansion is valid,
equations (6) then become

Aκ(ν,k, q, ν ′) = − i

2

∑

G,G′
C∗

ν′ ,k′(G
′)Cν,k(G)(G′ − G + q)

× Vκ(G
′ − G + q) · e−i(G′−G)·τ κ . (10)

Here we assume that the argument of Vκ (G
′ − G + q)

is a continuous vector in order to include the effect of lattice
vibrations. This means Vκ(G

′ − G+ q) needs to be calculated
by the interpolation of Vκ(G). The deformation potential,
�(η)(ν ′,k, q, ν), is defined as

〈ν ′,k ± q, Nηq ∓ 1|He−p|ν,k, Nηq〉

=
√

h̄

2Mκ Nωηq

�(η)(ν ′,k, q, ν)

√
Nηq + 1

2
∓ 1

2
. (11)

Comparing equations (5) and (11), the deformation potential
takes the form [18]

�(η)(ν ′,k, q, ν) = √
M

∣∣∣∣
∑

κ

1√
Mκ

Aκ(ν
′,k, q, ν) · e(η)

κ (q)

∣∣∣∣,

(12)
where M is the sum of the atomic mass in a unit cell or
M = ∑

κ Mκ .
The deformation potential scattering rate is calculated

using Fermi’s golden rule and the rigid ion approximation
for the wavevector-dependent deformation potential given by
equation (12). The non-polar deformation potential scattering
rate from the point k in band ν to a region 
k′ in band ν ′
centered around the k′ is written as [20]

Pdef
νν′ ,η(k,
k±q) = π

ρωηq

|�(η)(ν ′,k, q, ν)|2

× |I (ν, ν ′; k,k ± q)|2 Dν′ (E ′,
k′)(Nηq + 1
2 ∓ 1

2 ), (13)

where ρ is the semiconductor density, I (ν, ν ′; k,k ± q) is
the overlap integral between initial and final Bloch states
and Dν′(E ′,
k′) is the density of states in 
k′ at energy
E ′ = E(k) ± h̄ωηq . As can be seen from this derivation,
calculation of the anisotropic deformation potential requires
the eigenstates and eigenvectors of both the electronic structure
and lattice dynamics, as well as a model for the wavevector-
dependent atomic pseudopotentials, as discussed next.

3. Rigid ion model for zinc-blende GaN

3.1. Empirical pseudopotential method (EPM) band structure

There are various approaches to the calculation of electronic
structure ranging from ab initio (e.g. density functional
theory) to empirical. While work is on-going to incorporate
fully ab initio electronic structure and scattering rates into
transport simulation, for the rigid ion calculation and full
band EMC simulations discussed in the present paper, we
have used the empirical pseudopotential method (EPM) for
the electronic band structure of both zinc-blende and wurtzite
GaN, which uses empirically derived form factors to represent
the electronic pseudopotential at various reciprocal lattice
vectors, G [21]. For zinc-blende GaN, we have compared

3
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the results of using two different zinc-blende EPM calculations
reported in the literature, those due to Oğuzman et al [22] and
a second set due to Xia et al [23]. While Oğuzman et al fit
the symmetric and antisymmetric components of the lattice
potential, Vs and Va, at specific reciprocal lattice points, Xia
et al fit the atomic pseudopotentials of Ga and N to a functional
form suggested by Schlüter et al [24]:

Vα(G) = a1(G2 − a2)/[1 + exp(a3(G2 − a4))]. (14)

Figure 1(a) shows the comparison of the two band structures,
which are quite similar for the � valley, but show differences
at higher energies. In the present work, 113 reciprocal lattice
vectors were used in the calculation.

A key quantity related to electron–phonon scattering rates
is the electronic density of states (DOS):

ρ(E) =
∑

ν

∫
d3k δ(Eν(k) − E), (15)

where Eν(k) is the energy for electrons with band index ν and
wavevector k. Exploiting the symmetries of the zinc-blende
structure, the region over which the integration need actually
be done can be reduced to the 1/48 irreducible reference wedge
in the first Brillouin zone (BZ), which is illustrated in the inset
of figure 1(b) and defined by the inequalities

kx + ky + kz � 3

2

(
2π

a

)
, kz � kx � ky . (16)

To obtain the DOS numerically, we first compute the energy
levels corresponding to conduction band index ν, Eν(kλ)

at discrete points, kλ, λ = 1, . . . , 916, in the wedge.
These points are chosen to be equally spaced, separated
by 0.05(2π/a) along each direction, and only the first five
conduction bands are used. For the actual integration,
we use the quadratic interpolation algorithm developed by
Wiesenekker and Baerends [25]. Figure 1(b) shows the DOS
for zinc-blende GaN using the two different models. Note
that, in either case, after the initial increase the DOS shows
considerable structure, much of which falls below the initial
peak. In contrast, a simple non-parabolic model would be
monotonically increasing.

While the EPM calculation for the band structure
involves pseudopotential form factors defined at discrete
reciprocal lattice vectors, the RIM calculation for the electron–
phonon scattering rate given by equation (12) requires the
atomic pseudopotentials, Vα(q), at arbitrary values of q .
Unfortunately the interpolation of the atomic pseudopotentials
has been a matter of some controversy: hence we have
considered more than one approach. The first was to take
the form factors of Oğuzman et al [22] and use cubic splines
to interpolate between the values set at the reciprocal lattice
vector points. The results of this interpolation are shown
in figure 2(a). As part of this interpolation scheme, we
included the additional constraint that Vα(q = 0) = 0. On
the surface, this constraint would appear to be arbitrary and
unphysical, as Vα(0) should represent the average value of
the potential in the unit cell according to Fourier analysis.

Figure 1. (a) The electronic band structure of zinc-blende GaN,
generated using the pseudopotential form factors of Oğuzman et al
(solid line) and those of Xia et al (dashed). (b) The electronic density
of states as a function of energy using the Oğuzman et al (solid line)
and Xia et al (dashed line) pseudopotential form factors. Inset: an
irreducible reference wedge in the first Brillouin zone.

However, this assumption is mitigated by the fact that the truly
significant quantity as far as the matrix elements are concerned
is qVα(q), which will go to zero at q = 0. Moreover, it
has been argued that applying this assumption in the case
of Si give more consistent results for full-band Monte Carlo
simulations [26]. The reason for this appears to be that the
Vα(q = 0) = 0 constraint tends to limit the size of the
oscillations in Vα(q) in the region of small q . Removing
the constraint and allowing Vα(q) to ‘float’ freely tends to
result in Vα(q) taking on very large magnitude values in this
region. This has been illustrated for the example of Si in a
comment by Bednarek and Rössler [25]. Another approach
with regards to interpolation is to assume that Vα(q) follows
a particular functional form, which naturally brings us back to
equation (14). In figure 2(b) the atomic form factors for Ga and
N are plotted using equation (14) and the parameters reported
by Xia et al.

3.2. Phonon spectra

To calculate the phonon dispersion, we have used the valence-
shell model [26, 27], which uses ten adjustable parameters to
generate the required dynamical matrices, and was modified
to fit the phonon dispersion curves of zinc-blende lattice
structures. One complication is that, before obtaining the
dispersion, one needs sufficient phonon data in order to fit the
parameters. Unfortunately, as mentioned in section 1, very
few GaN phonon frequencies have actually been determined
experimentally, a problem even more acute for the zinc-blende
phase. As such, we have used the results from some earlier
theoretical calculations of phonon spectra to perform the shell
model fitting. In figure 3(a), we plot the phonon dispersion
along lines of symmetry using the best shell model fit
obtained using points experimentally determined by Azuhata

4
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Figure 2. (a) The ionic pseudopotentials of Ga and N as a function of
the square of the magnitude of reciprocal lattice vectors. The circles
are the form factors reported by Oğuzman et al. The lines represent a
cubic-spline fit with the constraint that Vα(q = 0) = 0. (b) As in (a),
except that the curves are given by equation (14) using Xia et al’s
parameters.

et al [28] (circles) as well as data extracted from dispersion
curves calculated theoretically by Zi et al using the Keating
model [29]. Figure 3(b) shows the results obtained using
shell model fits to data points extracted from the dispersion
curves calculated by Karch et al within the framework of self-
consistent density functional perturbation theory [30]. There
are obvious differences, such as the relative lack of dispersion
of the TO branches of the Zi et al fit compared to the fit to
Karch et al. The frequencies attained by the TA branches tend
to be significantly higher in the latter case as well.

3.3. Calculated scattering rate

The anisotropic scattering rate given by equation (13) may
be averaged over all final states and phonon modes to

Figure 3. The calculated phonon dispersion of GaN along high
symmetry lines obtained from a valence-shell model calculation fit to
the data of Zi et al and Azuhata et al (a) and Karch et al (b).

Figure 4. Electron–phonon scattering rate versus energy for the three
cases discussed in the text. The solid line represents the product of
the DOS with a fitted optical deformation potential.

realize an energy-dependent scattering rate. In figure 4 we
show the electron–phonon scattering rate for three different
cases. The dashed curve is obtained using Oğuzman
et al’s pseudopotentials and the fit to Zi et al’s phonon
dispersion curves. For the dotted curve, the fit to the
Zi et al dispersion was used, but Xia’s form factors
were used for the pseudopotentials. Finally, for the

5
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(a) (b)

Figure 5. EPM band structure of wurtzite GaN used in the present work and the corresponding density of states comparing wurtzite GaN to a
similar EPM calculation of the cubic zinc-blende phase.

dashed–dotted curve, Oğuzman et al’s pseudopotentials are
again used, while the phonon dispersion used in this case is
the shell model fit to Karch et al. Comparing the results, it
is evident that for the particular cases we considered, there
was a greater sensitivity to the model used for the phonon
dispersion than for the choice of the pseudopotentials. That
said, one can observe that the overall sensitivity to the EPM
calculation and phonon dispersion is relatively small overall,
which provides a satisfactory degree of confidence in the
overall method.

Given the energy-dependent scattering rate shown in
figure 4, it is also useful to connect to the usual deformation
potential approximation of scattering, for which it is assumed
that the deformation potentials are energy-and wavevector-
independent. The main energy dependence then enters through
the DOS, where the optical deformation potential electron–
phonon scattering rate can be written as

1

τ el−ph(E)
∝ D2ρ(E ′) (17)

where D is an optical deformation potential with units of
eV cm−1 and ρ(E ′) is the density of final states (initial plus
or minus the phonon energy).

Using a least-squares fit, we have extracted D from
equation (17), the calculated DOS from the band structure
of Oğuzman et al and the corresponding scattering rate of
Oğuzman/Zi in figure 4. In figure 4, the solid line is the result
obtained using a fitted value of D = 1.32 × 109 eV cm−1. As
can be seen, the overall fit is relatively good. It should be noted
that, in using equation (17), we assume a single optical phonon
frequency of 280 cm−1, or 35 meV, which corresponds to the
LA frequency at the X point.

4. Rigid ion model for wurtzite GaN

4.1. EPM band structure

While GaN may exist in either the cubic zinc-blende structure
or the hexagonal wurtzite structure, the dominant crystal
phase encountered in electronic and optoelectronic materials
is the hexagonal phase. For the wurtzite band structure, we
use the pseudopotential form factors for wurtzite reported
by Oğuzman et al [22] in previous full band Monte Carlo
studies, where 183 plane waves, corresponding to different
reciprocal lattice vectors, are used for the wurtzite lattice.
Here, reciprocal vectors up to the twentieth nearest neighbors
are used for the wurtzite lattice. In the band calculation
of the wurtzite lattice, the conduction bands are shifted by
−0.92 eV in order to fit the result to the experimental values
for the gap (3.4 eV) as discussed by Kolnı́k [16]. This shift
is necessary because the band structure was extracted to fitting
the effective mass rather than the bandgap, since the correct
conduction band effective mass is more important with respect
to electronic transport. The calculated band structure is shown
in figure 5. As can be seen, the second valley for wurtzite GaN
is at the middle point (U) between the L and M points, where
the energy is 2.0 eV above the conduction band minimum. The
density of states (DOS) obtained from this band structure is
also shown in figure 5, compared with the corresponding DOS
for zinc-blende GaN (no longer normalized per atom).

As discussed in detail in sections 2 and 3, the electron–
phonon scattering rate involves both the eigenvalues and
eigenvectors of the electronic motion, e.g. the Bloch states
calculated from EPM, as well as the phonon eigenvalues and
eigenvectors. Further, the dependence of Vα(q) on q requires
the representation of the atomic potential over a continuous
range of wavevectors rather than at discrete points in k

6
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Figure 6. EPM pseudopotential for wurtzite Ga and N as a function
of the squared magnitude of reciprocal lattice vector G (here treated
as a continuous function). The circle and square points are the
pseudopotentials of Ga and N atoms, respectively.

corresponding to specific reciprocal lattice vectors. Here we
again use the approach suggested by Fischetti et al [31], in
which a polynomial fit is used for the atomic potentials, which
are extrapolated to zero for small q. The interpolated form
factors for Ga and N are shown in figure 6.

4.2. Phonon spectra

In order to determine the sensitivity of the electron–phonon
scattering rate to the lattice dynamics model used, as was done
for zinc-blende GaN in section 3, we have also performed a

semi-empirical calculation of the phonon spectra in wurtzite
GaN using both the Keating potential method and the valence
force model (VFM). Little difference was found in the charge
transport properties using the two methods, similar to the
results discussed in section 6. Because of the lower symmetry
of the wurtzite structure, a more sophisticated lattice dynamics
model is required. Here a modified VFM reported by Siegle
et al [32] was used in the present work. This model
uses five valence force potentials and one effective charge
amount for the Coulomb term. The valence force potentials
are used for the bond-stretching, bond-bending and MSBN
interaction [33], which is the bond-bending force between
three adjacent lattice bonds. The anisotropic effect of wurtzite
GaN is taken into account by two sets of parameters: one
representing the interaction along the c axis and the other
perpendicular to it. We then fit the phonon dispersion to
the experimental data [34] by least-squares fitting, using the
various valence force potentials as parameters. Figure 7
shows the calculated Keating and VFM phonon dispersion for
wurtzite GaN compared with experiment [34]. Due to the
reduced symmetry and larger number of atoms per unit cell (4),
there are more optical modes compared to the zinc-blende
spectra shown in figure 3. Due to the anisotropy of the crystal,
the longitudinal optical (LO) phonon branch is discontinuous
with slightly different frequencies at the zone center for
modes propagating in the basal plane of the hexagonal lattice
(E1(LO)) versus those perpendicular (A1(LO)). In addition
to new optical branches between the TO and LO frequencies,
there are the equivalent of folded modes of the zinc-blende
structure that have non-zero frequencies at the zone center (E1

2
and B1

1).

4.3. Anisotropic deformation potential and calculated
scattering rates

From equation (12), the anisotropic (i.e. q-dependent)
deformation potential may be calculated within the RIM.

(a) (b)

Figure 7. Phonon dispersion for wurtzite GaN by (a) Keating model (solid curves) and (b) valence force model (solid curves).
The experimental data of Ruf et al [34] is shown by the symbols.
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Figure 8. Intervalley deformation potentials from � to U in wurtzite GaN for the various phonon modes shown in figure 7. The initial point is
moved around the � point as k = 0.3(cosϕ, sin ϕ, 0), which conserves energy. The k-vector unit is (4π/3a). The angle is measured from
point A in the figure.

Figure 8 shows a typical angular dependence of the calculated
deformation potential for a counterclockwise rotation of the
initial wavevector for a fixed final state at point U (upper valley
minimum) in the Brillouin zone. For this particular case, the
longitudinal optical modes tend to dominate the scattering rate,
although TO play a role as well. As is evident from this
plot, the deformation potential for any given phonon mode is
highly anisotropic and strongly dependent on the mode and
wavevector.

By taking the momentum average of the anisotropic
scattering rates at each energy, a comparative plot of the
deformation potential scattering rate versus energy can be
obtained, as shown in figure 9. Here we compare two different
phonon models, the VFM discussed earlier and the Keating
potential model. Also shown is the rate calculated using an
isotropic deformation potential, as used in previous full band
calculations for GaN. Four conduction bands are included in
the scattering rate calculation. The deformation potentials
obtained by the rigid pseudo-ion model are used only for
the first and second conduction bands in order to reduce
the computational resources needed. Constant deformation
potentials (10.1 eV for the acoustic deformation potential
scattering and 13.2 × 108 eV cm−1 for the non-polar optical
deformation potential scattering based on the value extracted
for zinc-blende in section 3) are used for the third and fourth
conduction bands. The deformation potential scattering rate
using the rigid pseudo-ion model is shown in figure 9, where
the rate is averaged over constant energy surfaces (solid line).
The solid line is the deformation potential scattering rate
with the phonon dispersion using the Keating model. The
dashed–dotted line is the deformation potential scattering rate
using constant deformation potentials. The same constant
deformation potentials mentioned above are used for all four
conduction bands. The scattering rate for the rigid pseudo-ion

Figure 9. Deformation potential scattering rate using rigid
pseudo-ion model. The solid line is the deformation potential
scattering rate with the phonon dispersion using the Keating model.
The dashed line is the rate using the valence force (VF) model. The
dashed–dotted line is the rate using constant deformation potentials.

model is higher than by the conventional constant parameter
deformation potential, which strongly affects the electron
transport, as discussed in section 5. In order to check the effect
of the phonon dispersion difference, the scattering rate with the
phonon using the valence force (VF) model is also shown in
the picture (dashed line). As is clearly seen, the scattering rate
with the valence force is almost the same as the one with the
Keating model. In contrast, the constant deformation potential

8
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Table 1. Parameters for polar optical phonon scattering. The phonon
energies are from [35].

h̄ωz 66.08 (meV) ε0
z 12.2

h̄ωzL 91.13 (meV) ε∞
z 5.8

h̄ω⊥ 69.55 (meV) ε0
⊥ 9.5

h̄ω⊥L 92.12 (meV) ε∞
⊥ 5.35

Table 2. Parameters for piezoelectric scattering [39].

e15 e31 e33 CL (Pa) CT (Pa)

−0.3 −0.33 0.65 2.65 × 1011 4.42 × 1010

model shows significant differences, at low and medium energy
ranges, which ultimately affect high field transport.

5. Other scattering mechanisms

5.1. Anisotropic polar optical phonon scattering

Polar optical phonon scattering is the dominant scattering
mechanism for compound semiconductors like GaAs or GaN
at room temperature for low electric fields, at least in low
doped materials with good crystal quality. In general,
the electron–phonon coupling in zinc-blende crystals is due
to a single longitudinal optical (LO) mode phonon. In
wurtzite GaN, however, the coupling is different, including in
longitudinal optical (LO)-like and transverse optical (TO)-like
modes [35], since these phonon modes in wurtzite crystals are
neither purely longitudinal or transverse (the [0001] direction
excepted) [36]. Here, both the LO-like and the TO-like
mode polar optical phonon scattering rates are calculated. As
discussed in [35], the scattering rate is calculated based on
Fermi’s golden rule:

Ppol
νν′ ,η(k,
k±q) = 2π

h̄
|C (η)(q)|2|I (ν, ν ′; k,k ± q)|2

× Dν′ (E ′,
k′)(Nηq + 1
2 ∓ 1

2 ) (18)

where I (ν, ν ′; k,k ± q) is the Bloch overlap factor and
Dν′ (E ′,
k′) is the density of states as before. C (η)(q) is
the electron–phonon coupling coefficient. Since the wurtzite
structure is a uniaxial crystal, the electron–phonon coupling
coefficient is formally different from the well-known Fröhlich
expression and couples the interaction associated with purely
longitudinal modes in cubic structures, with the transverse
optical modes. The coupling coefficients for the anisotropic
uniaxial crystal have been reported by Lee et al [36], in which
C (η)(q) may be broken into longitudinal and transverse optical
phonon components, expressed as

CLO−like(q) = 2πe2h̄

V q2ωLO
q

[
sin2 θq

(1/ε∞
⊥ − 1/ε0

⊥)ω2
⊥L

+ cos2 θq

(1/ε∞
z − 1/ε0

z )ω
2
zL

]
(19)

CTO−like(q) = 2πe2h̄

V q2ωTO
q

× (ω2
⊥T − ω2

zT)2 sin2 θq cos2 θq

(ε0
⊥ − ε∞

⊥ )ω2
⊥T cos2 θq + (ε0

z − ε∞
z )ω2

zT sin2 θq

(20)

Figure 10. Polar optical phonon scattering rate in wurtzite GaN.

where θq is the angle between the [0001] direction (c axis)
and the phonon vector q, V is the crystal volume, ωLO

q (ωTO
q )

is the LO-like (TO-like) mode phonon frequency, ω⊥T(ωzT)

is the TO mode phonon frequency perpendicular to (along)
the c axis at the zone center and ω⊥L (ωzL) is the LO mode
phonon frequency perpendicular to (along) the c axis at the
zone center. ε∞ is the high frequency dielectric constant and ε0

is the static dielectric constant, where the subscript ⊥ denotes
perpendicular to (along) the c axis. The parameters used in this
work are listed in table 1.

Figure 10 shows the calculated polar optical phonon
scattering rate in wurtzite GaN based on equations (18)–(20).
The LO-like polar optical phonon scattering rate is more than
two orders of magnitude stronger than the TO-like mode polar
optical phonon scattering. Hence, the LO-like mode phonon
dominates the polar optical electron–phonon interaction in the
wurtzite GaN. In this work, both polar optical scattering modes
are employed.

5.2. Piezoelectric scattering

In crystals which lack inversion symmetry, elastic strain due
to acoustic phonons may be accompanied by a microscopic
electric field, which leads to piezoelectric scattering. The
piezoelectric effect is known to be strong in nitride materials.
Thus, the consideration of piezoelectric scattering effects for
electron transport in GaN is important. The matrix element for
piezoelectric scattering is given by the following equation [37]:

〈k′|Vpz(k
′ − k)|k〉 =

{
Cpz(q)

√
Nq

C†
pz(q)

√
Nq + 1

(21)

Cpz(q) is expressed as

Cpz(q) = ee∗
pz

ε∗

√
h̄

2M Nωq

(22)
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where e∗
pz and ε∗ are the effective piezoelectric constant, and

effective dielectric constant, respectively. For simplicity, the
equipartition approximation is used and the square of the
matrix element becomes

|〈k′|Vpz(k
′ − k)|k〉|2 = e∗2

pz

ε∗2

e2h̄

2M NωLA
q

kBT

h̄vsq

= e∗2
pz

ρvsε∗
e2kBT

2L3q2ε∗

= K 2
av

e2kBT

2L3q2ε∗ , (23)

where vs is the sound velocity, ρ is the density, ωLA
q is the LA

mode phonon frequency and L3 is the lattice volume. Kav is
called the electromechanical coupling coefficient. For zinc-
blende crystals, Kav is expressed in the following form [38]:

K 2
av = e2

14

ε

(
12

35cL
+ 16

35cT

)
(24)

where

cL = c12 + 2c44 + 3
5 c∗, cT = c44 + 1

5 c∗,

c∗ = c11 − c12 − 2c44.
(25)

e14 is the piezoelectric constant in the zinc-blende crystal and
c11, c12, c44 are elastic constants. For the wurtzite lattice, the
Kav becomes [38]

K 2
av = 〈e2

l 〉
ε∗cL

+ 〈e2
t 〉

ε∗cT
(26)

where

〈e2
l 〉 = 1

7 e2
33 + 4

35 e33(e31 + 2e15) + 8
105 (e31 + 2e15)

2,

〈e2
t 〉 = 2

35 (e33 − e31 − e15)
2 + 16

105 e15(e33 − e31 − e15)

+ 16
35 e2

15.

(27)

The parameters are listed in table 2. The scattering rate is then
written as

Ppiezo
νν′ (k,
k′) = 2π

h̄
K 2

av

e2kBT

q2ε∗ |I (ν, ν ′; k,k′)|2 Dν′ (E ′,
k′)

(28)
which includes both absorption and emission processes.

5.3. Dislocation and ionized impurity scattering

Due to the lack of a lattice-matched substrate for nitride
growth, the typical density of dislocations is of the order of
109–1011 cm−2, which is much higher than in conventional
GaAs-based LEDs or lasers. In GaAs-based devices, a
dislocation density of 104 cm−2 is sufficient to suppress
lasing, for example. The fact that GaN LEDs show good
performance with much higher dislocation densities, indicates
that dislocations in GaN may not form trap states within
the bandgap. Several experimental investigations indicate
that dislocations may be charged and show acceptor-like
behavior. This fact is also confirmed by the recent scanning

capacitance microscopy imaging of threading dislocations,
which indicates acceptor-like traps [40, 41]. Bonch-Bruevich
et al [42] calculated the potential due to vertical line charges
and Pödör obtained a momentum relaxation rate and mobility
after averaging over energy [43]. Weimann et al [44]
employed this relaxation rate and obtained good agreement
with measured Hall mobility in wurtzite GaN. The same
approach by Weimann et al is used in this work.

The screened potential energy at a large distance from
a charged dislocation can be expressed using a zero-order
modified Bessel function:

U(r) = 1

4πε

2e f

c
K0

(
r

λ

)
(29)

where c is the lattice parameter along the (0001) direction, f
is the fraction of filled traps ranging from 0 to 1, and λ is the
Debye length:

λ =
√

εkBT

e2n
(30)

where n is the free carrier concentration. The scattering
due to dislocation line charges is essentially two-dimensional,
because only carriers moving perpendicular to the line charges
are scattered. The Fourier transform of the scattering potential
is obtained by the two-dimensional integration:

A(q) =
∫ ∞

0

∫ 2π

0

e2λ2

2πεc
K0(x)e−iqλx cos θ x dθ dx (31)

where x = r/λ, q = k′⊥ −k⊥, k⊥ is the incoming wavevector
and k′⊥ is the outgoing. Look et al [45] approximated A(q) as

A(q) = e2λ2

εc(1 + q2λ2)
(32)

where q2 = |k′⊥ − k⊥|2. The final expression of the scattering
rate for electrons of wavevector k is

Pdis
νν′ (k⊥, kz,
k′⊥,kz ) = 2π

h̄

ndise4λ4 f 2

ε2c2(1 + q2λ2)2

× |I (ν, ν ′; k⊥, kz,k′⊥, kz)|2 D⊥(E ′,
k′⊥,kz ) (33)

where ndis is the density of the dislocation and D⊥(E ′,
k′⊥,kz )

is the 2D density of states perpendicular to the z(c) axis.
Note that kz is conserved after scattering since the dislocation
scattering is two-dimensional.

The rate of electron scattering due to ionized impurities is
calculated based on the Brooks–Herring (BH) approach [46],
here modified for Bloch states. Within the BH formalism, the
carrier is assumed to interact with a single ionized impurity
and the screening parameter is used to account for many-body
effects. If the distance between the scattering centers is smaller
than the screening length, i.e. high doping density or low
temperature, this screening procedure fails to represent the
real scattering and the scattering needs to be treated as a two-
body problem. This limitation is modified in Ridley’s model
by taking into account the probability of a particular ionized
impurity being the nearest scattering center [47], which we use
in the full band EMC simulations discussed in section 6.
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(a) (b)

Figure 11. Calculated drift velocity and energy distribution at the various applied fields for wurtzite GaN at 300 K, assuming a constant
deformation potential. (a) Electrical field versus drift velocity along the (21̄1̄0) direction; (b) energy distribution at the various fields.

6. Full band cellular Monte Carlo simulation

A full band cellular Monte Carlo (CMC) method is used to
calculate the transport properties, in which the scattering rates
for every initial and final state are tabulated over the Brillouin
zone [48]. Since the CMC method pre-tabulates the scattering
rates for every initial and final wavevector throughout the
BZ, the determination of the final state after scattering is
eliminated, which is typically computationally intensive in
traditional full band EMC simulation. The trade-off is that a
large amount of memory is needed to store the lookup table,
typically several GBs. For that reason, we typically employ a
hybrid simulator, where the CMC algorithm is used at lower
energies where frequent scattering occurs, while a full band
EMC simulation algorithm is used at high energies to minimize
the amount of memory used. Another issue for the CMC
algorithm is the accuracy of the final state energy, since it is
only known within the uncertainty of the energy spanned by
a given cell in k-space, whereas in EMC the final energy is
determined exactly. This energy uncertainty error in the CMC
is minimized by proper optimization of the grid size, where a
nonuniform mesh in k-space is used to improve the accuracy
in critical regions relative to transport, such as the conduction
band minimum.

6.1. Velocity–field characteristics and distribution function

The transport properties of bulk zinc-blende and wurtzite
GaN are first calculated and compared assuming a constant,
isotropic, deformation potential. In this calculation, only
phonon scattering, such as the deformation potential scattering
and the polar optical phonon scattering, are taken into account.
The electric field is applied along the (21̄1̄0) direction within
the basal plane for wurtzite GaN and the (100) direction for

zinc-blende GaN. In the case of wurtzite GaN, the CMC/EMC
hybrid model is used in order to reduce the scattering table
size since the IW size of wurtzite is about four times larger
than zinc-blende. The EMC model is used when the electron
energy is 3 eV above the bottom of the conduction band. Four
conduction bands are taken into account for each calculation.
The acoustic deformation potential is set as 10.1 eV, which is
the same value used in the previous full band EMC calculation
of wurtzite GaN by Brennan et al [17]. The non-polar
optical phonon deformation potential of 13.2 × 108 eV cm−1

is used, which is obtained by the rigid pseudo-ion calculation
in zinc-blende GaN discussed in section 3. A 76 × 72 × 40
inhomogeneous grid is used for the first conduction band and
a 50 × 50 × 20 grid for the other bands in the calculation of
wurtzite GaN. In the case of zinc-blende GaN, a 70 × 70 ×
70 inhomogeneous grid for the first conduction band and a
50 × 50 × 50 grid for the other bands are used. The total
required memory sizes for the transport calculation are 1.1 GB
and 1.3 GB for wurtzite and zinc-blende, respectively.

Figures 11 and 12 show the applied field dependence
of the drift velocity and the associated particle distribution
functions for wurtzite and zinc-blende GaN. The previous
results reported by Brennan et al [17] are also shown in the
figures. Here a comparison is made between the CMC and
a full band EMC simulation where the final state is chosen
after scattering within the BZ. The results of CMC show good
agreement with the results of EMC for both lattice structures,
which suggests that energy uncertainty errors associated with
the CMC are minimal.

The distribution of particles in the first BZ is shown in
figure 13 for both wurtzite and zinc-blende. At low electric
fields (100 kV cm−1 and below) the electrons are only in the
� valley. As the electric field increases, the electrons begin to
populate the second valley, which is at the U point for wurtzite
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(a) (b)

Figure 12. Calculated drift velocity and energy distribution at the various applied fields for zinc-blende GaN at 300 K, assuming a constant
deformation potential. (a) Electrical field versus drift velocity along the (100) direction; (b) energy distribution at the various fields.

and the X point for zinc-blende. At extremely high electric
fields, the electrons are distributed throughout the entire BZ
for both lattice phases of GaN.

Figure 14(a) shows the simulated velocity–field character-
istics for bulk GaN at 300 K based on the rigid ion model,
compared with the constant deformation potential model, and
with the experimental data of Barker et al [8]. As can be seen,
the RIM model gives a systematically lower electron velocity
compared with earlier constant deformation potential models.
In comparison with experiment, with only deformation poten-
tial and polar optical phonon scattering included, the velocity–
field characteristics are too high compared to experiment at
low density, as shown in figure 14(b), while giving reason-
ably good agreement with the peak velocity measured above
200 kV cm−1. While the peak velocity is mainly determined by
phonon scattering (deformation, piezo- and polar-mode scat-
tering), the low field region is primarily dominated by elas-
tic mechanisms, including ionized impurity and dislocations.
Here, an impurity density of 1.35 × 1017 cm−3 is used, which
is taken from experimental data [8]. The dislocation density
3 × 109 cm−2 and charge fraction 0.5 are chosen to fit the ex-
perimental low field mobility data. The velocity with only im-
purity scattering or with impurity and piezoelectric scatterings
is still higher than experimental data in the low electric field re-
gion. Including dislocation scatterings decreases the low field
velocity and the simulated data show a good agreement with
the experimental data. On the other hand, the constant de-
formation potential model cannot represent the experimental
data even when these three scatterings are included, due to the
higher peak velocity.

Figure 15 shows the field dependence of the drift velocity
when the electric field is applied along the different directions.
The (21̄1̄0) and (101̄0) directions are within the basal plane.
The peak velocities are slightly different but almost the same,

especially in the high field region. This result shows that the
anisotropic effects in the deformation potential do not play a
significant role in terms of the velocity–field relationship in the
different applied field directions.

In order to check the effect of the phonon model used, the
velocity–field curve using the valence force model is compared
with the phonon dispersion and eigenvectors calculated using
the Keating model. As shown in figure 16, the velocity–
field characteristics with the valence force model are nearly
identical to the ones calculated using the Keating model. This
shows that differences of the phonon model have only small
effects on the transport characteristics.

Figure 17 compares the transient overshoot velocity
calculated in GaN for both the constant deformation potential
model and the full rigid ion model. As expected, the overshoot
is less in the RIM case due to the higher net scattering and the
corresponding reduction in velocity. Even in the RIM case,
however, overshoot velocities in excess of 5 × 107 cm s−1 are
predicted.

6.2. Nonequilibrium phonons

Under high electric fields, the emission of phonons drives the
phonon distribution out of equilibrium and increases the net
scattering rate, causing a reduction in velocity. Because of
the high electric field and the high electron density in devices
such as AlGaN/GaN HEMTs, nonequilibrium phonons may
therefore play an important role in the transport properties.
Recently, Ardaravičius et al [49] have shown the potential
importance of nonequilibrium hot phonons in GaN high field
transport. Here we include the effect on the LO optical phonon
scattering. A rate equation approach is used, in which the
dynamical evolution of the LO phonon distribution, Nq , can be
described using a detailed balance of emission and absorption
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Figure 13. Carrier distribution in the first BZ for wurtzite (left) and zinc-blende (right) GaN at various electric fields.

events with the electron system, as well as the anharmonic
decay of optical phonons into acoustic phonons [50]:

∂ Nq

∂ t
= ∂ Nq

∂ t

∣∣∣∣
ph−c

+ ∂ Nq

∂ t

∣∣∣∣
ph−ph

;

∂ Nq

∂ t

∣∣∣∣
ph−ph

= − Nq − NL

τop
.

(34)

The second expression represents the decay of the optical
modes, characterized by the phonon relaxation time, τop. This
value has recently been measured using time-resolved Raman
scattering, where it is found to be a strong function of density
decreasing in time as the density increases [51].

We have included hot phonons within the full band
simulator in which k-space is discretized, and a phonon
distribution, Nq , and a histogram, hq , are defined over a grid
in the k-space. At each time step of the simulation, the phonon
distribution at T = n�t is calculated as

Nq(n�t) = Nq((n − 1)�t) + δNq (n�t)
∣∣
ph-c

− [Nq (n�t) − NL]�t

τop
(35)

where the first term on the rhs is the change in Nq due to
scattering events with electrons (emission or absorption) and
the second term is the decay of the phonon population over
each time step due to phonon relaxation. Here a phonon
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(a) (b)

Figure 14. (a) Calculated velocity–field characteristics comparing the rigid pseudo-ion model, constant deformation potential, and the
experimental results of Barker et al [8] and (b) calculated velocity–field characteristics including various scattering mechanisms based on the
fully anisotropic rigid pseudo-ion model compared with experiment.

Figure 15. The velocity–field relationship for different field
directions. The deformation potential scattering is calculated using
the rigid pseudo-ion model. Impurity, piezoelectric and dislocation
scatterings are included as well.

lifetime of 0.3 ps is assumed, corresponding to the higher
density limit measured by Raman scattering [51]. Due to
the temporally varying scattering rates, the CMC algorithm
itself cannot be used, and rather a conventional full band
EMC algorithm is used, using a self-scattering algorithm for
the phonons [50]. The calculated effect on the velocity–field
characteristics are shown in figure 18. As can be seen, at high
carrier densities, a strong suppression of the carrier velocity
due to the higher scattering rate associated with hot phonons

Figure 16. Velocity–field relationship using the Keating model and
the valence force (VF) model in phonon calculations.

occurs. Such effects may have a profound influence on device
behavior, particularly AlGaN/GaN HEMTs, due to the high
carrier density in the channel, which degrades the velocity, and
hence the frequency response associated with the carrier transit
time.

7. Conclusions

Herein we have presented a systematic study of the scattering
rates and high field transport properties of wurtzite and
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(a) (b)

Figure 17. Velocity versus time for various electric field strengths for (a) the constant deformation model and (b) the rigid ion model.

Figure 18. Calculated velocity–field characteristics including
nonequilibrium hot phonons for several different bulk densities.

zinc-blende GaN using a microscopic rigid pseudo-ion method.
We first show the relative sensitivity of the calculated
scattering rates to the electronic band structure and lattice
dynamics calculation, where it is shown that the RIM
rates are relatively insensitive to the model chosen. The
velocity–field characteristics were calculated including various
scattering mechanisms including the RIM phonon scattering,
and compared to pulsed I –V measurements in bulk material.
It is found that, while the peak velocity is controlled primarily
by deformation potential scattering (corresponding to the onset
of intervalley scattering), at low fields dislocation and ionized
impurity scattering dominate the experimental data. It is shown

that there is very little anisotropy in the calculated velocity–
field characteristics depending on the direction of the applied
electric field, both in and out of the basal plane of the wurtzite
phase. Finally, we investigated the effects of nonequilibrium
hot phonons on the transport characteristics, where at high
carrier density significant degradation of the peak velocity can
occur.
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